
Soft Computing, Lecture 6

1

Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are a connectionist model containing a self-connected

hidden layer. One benefit of the recurrent connection is that a ‘memory’ of previous inputs remains

in the network’s internal state, allowing it to make use of past context. Context plays an important

role in handwriting recognition, as illustrated in Figure 1.

Figure 1: Importance of context in handwriting recognition. The word ‘defence’ is clearly legible, but the letter ‘n’ in isolation is
ambiguous.

Humans don’t start their thinking from scratch every second. As you read this lecture, you

understand each word based on your understanding of previous words. You don’t throw everything

away and start thinking from scratch again. Your thoughts have persistence.

Traditional neural networks can’t do this, and it seems like a major shortcoming. For

example, imagine you want to classify what kind of event is happening at every point in a movie.

It’s unclear how a traditional neural network could use its reasoning about previous events in the

film to inform later ones.

Recurrent neural networks address this issue. They are networks with loops in them,

allowing information to persist.

Figure 2: Recurrent Neural Networks have loops.

Soft Computing, Lecture 6

2

In the above diagram, a chunk of neural network, 𝑨, looks at some input 𝑥𝑡 and outputs a

value ℎ𝑡. A loop allows information to be passed from one step of the network to the next.

These loops make recurrent neural networks seem kind of mysterious. However, if you

think a bit more, it turns out that they aren’t all that different than a normal neural network. A

recurrent neural network can be thought of as multiple copies of the same network, each passing a

message to a successor. Consider what happens if we unroll the loop:

Figure 3: An unrolled recurrent neural network.

This chain-like nature reveals that recurrent neural networks are intimately related to

sequences and lists. They’re the natural architecture of neural network to use for such data.

And they certainly are used! In the last few years, there have been incredible success

applying RNNs to a variety of problems: speech recognition, language modeling, translation,

image captioning… The list goes on.

Essential to these successes is the use of “LSTMs,” a very special kind of recurrent neural

network which works, for many tasks, much better than the standard version. Almost all exciting

results based on recurrent neural networks are achieved with them.

The Problem of Long-Term Dependencies

One of the appeals of RNNs is the idea that they might be able to connect previous

information to the present task, such as using previous video frames might inform the

understanding of the present frame. If RNNs could do this, they’d be extremely useful. But can

they? It depends.

Sometimes, we only need to look at recent information to perform the present task. For

example, consider a language model trying to predict the next word based on the previous ones. If

we are trying to predict the last word in “the clouds are in the sky,” we don’t need any further

context – it’s pretty obvious the next word is going to be sky. In such cases, where the gap between

the relevant information and the place that it’s needed is small, RNNs can learn to use the past

information.

Soft Computing, Lecture 6

3

But there are also cases where we need more context. Consider trying to predict the last

word in the text “I grew up in France… I speak fluent French.” Recent information suggests that

the next word is probably the name of a language, but if we want to narrow down which language,

we need the context of France, from further back. It’s entirely possible for the gap between the

relevant information and the point where it is needed to become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to connect the information.

In theory, RNNs are absolutely capable of handling such “long-term dependencies.” A

human could carefully pick parameters for them to solve toy problems of this form. Sadly, in

practice, RNNs don’t seem to be able to learn them. The problem was explored in depth by

Hochreiter (1991) [German] and Bengio, et al. (1994), who found some pretty fundamental reasons

why it might be difficult.

Thankfully, LSTMs don’t have this problem!

Soft Computing, Lecture 6

4

LSTM Networks

Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of

RNN, capable of learning long-term dependencies. They were introduced by Hochreiter &

Schmidhuber (1997), and were refined and popularized by many people in following work. They

work tremendously well on a large variety of problems, and are now widely used.

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering

information for long periods of time is practically their default behavior, not something they

struggle to learn!

All recurrent neural networks have the form of a chain of repeating modules of neural

network. In standard RNNs, this repeating module will have a very simple structure, such as a

single tanh layer.

Figure 4: The repeating module in a standard RNN contains a single layer.

LSTMs also have this chain like structure, but the repeating module has a different structure.

Instead of having a single neural network layer, there are four, interacting in a very special way.

Soft Computing, Lecture 6

5

Figure 5: The repeating module in an LSTM contains four interacting layers.

Don’t worry about the details of what’s going on. We’ll walk through the LSTM diagram

step by step later. For now, let’s just try to get comfortable with the notation we’ll be using.

In the above diagram, each line carries an entire vector, from the output of one node to the

inputs of others. The pink circles represent pointwise operations, like vector addition, while the

yellow boxes are learned neural network layers. Lines merging denote concatenation, while a line

forking denote its content being copied and the copies going to different locations.

The Core Idea Behind LSTMs

The key to LSTMs is the cell state, the horizontal line running through the top of the

diagram.

The cell state is kind of like a conveyor belt. It runs straight down the entire chain, with

only some minor linear interactions. It’s very easy for information to just flow along it unchanged.

Soft Computing, Lecture 6

6

The LSTM does have the ability to remove or add information to the cell state, carefully

regulated by structures called gates.

Gates are a way to optionally let information through. They are composed out of a sigmoid

neural net layer and a pointwise multiplication operation.

The sigmoid layer outputs numbers between zero and one, describing how much of each

component should be let through. A value of zero means “let nothing through,” while a value of

one means “let everything through!”

An LSTM has three of these gates, to protect and control the cell state.

Step-by-Step LSTM Walk Through

The first step in our LSTM is to decide what information we’re going to throw away from

the cell state. This decision is made by a sigmoid layer called the “forget gate layer.” It looks at

ℎ𝑡−1 and 𝑥𝑡, and outputs a number between 0 and 1 for each number in the cell state 𝐶𝑡−1. A 1

represents “completely keep this” while a 0 represents “completely get rid of this.”

Let’s go back to our example of a language model trying to predict the next word based on

all the previous ones. In such a problem, the cell state might include the gender of the present

subject, so that the correct pronouns can be used. When we see a new subject, we want to forget

the gender of the old subject.

Soft Computing, Lecture 6

7

The next step is to decide what new information we’re going to store in the cell state. This

has two parts. First, a sigmoid layer called the “input gate layer” decides which values we’ll update.

Next, a tanh layer creates a vector of new candidate values, 𝑪𝒕̃, that could be added to the state. In

the next step, we’ll combine these two to create an update to the state.

In the example of our language model, we’d want to add the gender of the new subject to

the cell state, to replace the old one we’re forgetting.

It’s now time to update the old cell state, 𝑪𝒕−𝟏, into the new cell state 𝑪𝒕. The previous

steps already decided what to do, we just need to actually do it.

We multiply the old state by 𝑓𝑡, forgetting the things we decided to forget earlier. Then we

add 𝑖𝑡 ∗ 𝑪𝒕̃. This is the new candidate values, scaled by how much we decided to update each state

value.

In the case of the language model, this is where we’d actually drop the information about

the old subject’s gender and add the new information, as we decided in the previous steps.

Soft Computing, Lecture 6

8

Finally, we need to decide what we’re going to output. This output will be based on our

cell state, but will be a filtered version. First, we run a sigmoid layer which decides what parts of

the cell state we’re going to output. Then, we put the cell state through 𝑡𝑎𝑛ℎ (to push the values

to be between −1 and 1) and multiply it by the output of the sigmoid gate, so that we only output

the parts we decided to.

For the language model example, since it just saw a subject, it might want to output

information relevant to a verb, in case that’s what is coming next. For example, it might output

whether the subject is singular or plural, so that we know what form a verb should be conjugated

into if that’s what follows next.

What has been described above is a pretty normal LSTM. But not all LSTMs are the same

as the above. In fact, it seems like almost every paper involving LSTMs uses a slightly different

version.

References and further reading:

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2008). A novel

connectionist system for unconstrained handwriting recognition. IEEE transactions on pattern analysis and

machine intelligence, 31(5), 855-868.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

